Analysis of Numerical Methods for Differential-Algebraic Equations: The one Step Methods
نویسندگان
چکیده
Abstract. Differential algebraic equations have wide applications in the field of engineering and science where the mathematical models form the descriptor systems. Analysis and modeling of the solutions of such systems need to handle with the different equations related to the systems. A time-domain discretization, for example, finite difference, finite volume, etc., may lead to DAEs of descriptor forms. Numerical approaches for solving those differential-algebraic equations (DAEs) can be divided into two classes: direct discretizations and reformulation method (e.g., index reduction), combined with discretization. There are some limitations of direct discritization method. In this paper, the numerical methods have been discussed for strangeness-free problems with example.
منابع مشابه
On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملA new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions
A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...
متن کاملPresentation of two models for the numerical analysis of fractional integro-differential equations and their comparison
In this paper, we exhibit two methods to numerically solve the fractional integro differential equations and then proceed to compare the results of their applications on different problems. For this purpose, at first shifted Jacobi polynomials are introduced and then operational matrices of the shifted Jacobi polynomials are stated. Then these equations are solved by two methods: Caputo fractio...
متن کاملNumerical solution of two-dimensional integral equations of the first kind by multi-step methods
In this paper, we develop multi-step methods to solve a class of two-dimensional nonlinear Volterra integral equations (2D-NVIEs) of the first kind. Here, we convert a 2D-NVIE of the first kind to a one-dimensional linear VIE of the first kind and then we solve the resulted equation numerically by multi-step methods. We also verify convergence and error analysis of the method. At t...
متن کاملNumerical Solution of fuzzy differential equations of nth-order by Adams-Moulton method
In recent years, Fuzzy differential equations are very useful indifferent sciences such as physics, chemistry, biology and economy. It should be noted, that if the equations that appear to be uncertain, then take help of fuzzy logic at these equations. Considering that most of the time analytic solution of such equations and finding an exact solution has either high complexity or cannot be solv...
متن کاملMathematical modeling of a fixed bed chromatographic reactor for Fischer Tropsch synthesis
In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...
متن کامل